Мышцы красные и белые


Красные и белые мышцы

Энергетическое обеспечение различных видов мышечной работы различается. Скелетные мышцы неоднородны, они различаются по специфичности биохимических процессов, которые в них проходят, и по функциональным возможностям. Существуют красные (медленные, аэробные) мышцы и белые (быстрые, анаэробные).

Красные мышцы хорошо обеспечены кровью, содержащих много миоглобина, который придает им красный цвет. В них большое количество митохондрий, активные ферменты окислительного фосфорилирования. Как энергетические субстраты используются: глюкоза, жирные кислоты, кетоновые тела, которые окисляются аэробным путем. Красные мышцы более приспособлены к длительной работы, например поддержание тела в определенном положении.

Красные и белые мышцы

Белые мышцы плохо обеспечены кровью, в них мало митохондрий, но много гликолитических ферментов, поэтому быстро окисляется гликоген. В этих мышцах высокая активность КФК и миокиназа. Белые мышцы обеспечивают кратковременную работу максимальной мощности. Они быстрее переходят от состояния покоя к максимальной активности, сокращаются энергично, но в них быстро развивается утомление, исчерпываются запасы гликогена, а поступление глюкозы из крови и ее окисления происходит медленно.

В организме человека нет вполне белых или красных мышц, есть белые и красные мышечные волокна. Соотношение этих волокон в различных мышцах разное: в мьязахрозгиначах больше «белых» волокон, в мышцах спины — «красных». Существуют также индивидуальные различия, есть генетическая предрасположенность к выполнению той или иной мышечной работы, позволяет оценить спортивные возможности человека)​​.

bagazhznaniy.ru

«Генетические везунчики» на примере мышечных волокон и людей

Во время тренировки мы не часто задумываемся о том, какие сложные процессы протекают во всем организме. О пользе регулярной физической активности говорят уже давно, и каждый год ученые со всего мира пытаются пролить свет на новые «полезные» механизмы влияния тренировок на здоровье.

Как следствие особого внимания к активному образу жизни, мы – ученые, получили ценную информацию о том, каким образом протекают разные процессы и чем именно достигается их ювелирная координация в организме человека.

В данной статье мы постараемся перевести эти интересные факты с профессионального языка исследователей на научно-популярный и рассказать просто о сложном.

В этот раз хочется начать с рассказа про мышечные волокна, почему в физиологии их условно разделили на несколько типов, и в чем разница между силовыми и аэробными занятиями.

Мышечные волокна – это то, из чего состоит отдельно взятая мышца, допустим, бицепс. Этот мускул, как и все остальные, содержит два основных типа мышечных волокон – быстрые (или «белые») и медленные (или «красные») [1].

Красные волокна, которые расположены ближе всего к кости, получили свое название из-за высокой концентрации особых клеточных органелл – митохондрий («энергетических станций») и большого запаса пигментного белка красного цвета  миоглобина («переносчиков кислорода»).

Миоглоби́н – белок, который связывает кислород в клетках скелетных мышц и мышцы сердца и таким образом обеспечивает их энергией для сокращения.

Продвигаясь к наружной поверхности мышцы, можно увидеть белые волокна, которые называются так из-за того, что действительно имеют менее выраженный цвет, чем красные. В них мало митохондрий, нет миоглобина, и для работы им необходимо запустить целый каскад биохимических реакций. [1]

Белые (быстрые) волокна Красные (медленные) волокна
Источник «топлива» — гликоген (углевод). Резерв «топлива» – подкожная жировая ткань [1]. Сокращаются только в присутствии кислорода.
Задача быстрых волокон – обеспечить мощные кратковременные сокращения с помощью резкого повышения активности ферментов, расщепляющих гликоген. Имеют большую силу и возможность значительного роста. Преимущество белых волокон в виде гипертрофии способно помочь в развитии силовых возможностей человека. Красные мышечные волокна при высокой производительности не способны к значительной гипертрофии, то есть их объем почти не увеличивается из-за особенностей их метаболизма [8]. Отвечают за поддержание позы, осанки, позволяют длительно бежать или сделать 100 повторений «на пресс», но они не растут [1].
При интенсивных силовых тренировках возможно частичное превращение медленных волокон в промежуточные, которые обладают свойствами как медленных, так и быстрых волокон, давая прирост мышечной массе [9]. Запасы красных волокон «застрахованы» организмом, и даже малоподвижный образ жизни способен поддерживать эти резервы на уровне, достаточном для перемещения тела в пространстве.

Как уже стало понятно, белые волокна – это рельеф, объем и скоростно-силовые характеристики. Для того чтобы 40 раз отжаться или работать на пределе возможностей, включаются в работу быстрые волокна.

Исходя из знаний про мышечную ткань, важно понимать, что, тренируя выносливость во время аэробных занятий, мы в основном задействуем красные волокна, которые будут «сжигать жир» и повысят уровень обмена веществ. Силовые же тренировки позволяют поддерживать мышцы в тонусе и формируют привычный мышечный рельеф стройного тела, задействуя белые волокна.

Теперь, когда сложилось общее представление о волокнах, самое время узнать более интересные научные факты о мышечной ткани.

Все знают популярную, но устаревшую с научной точки зрения, фразу о том, что нервные клетки не восстанавливаются, но эта «необратимость» относится и к мышечной ткани в равной степени.

Дело в том, что после рождения у нас не происходит численного увеличения мышечных клеток обоих типов волокон, а после 35-40 лет каждый год мы безвозвратно теряем 1% сухой мышечной массы за счет уменьшения их объема. [2,5] Замедлить этот процесс помогает активный образ жизни и регулярные силовые упражнения на тренировку основных мышечных групп [6].

Некоторые люди, даже не утруждая себя тренировками, имеют достаточную мышечную массу, а другие, напротив, быстро теряют форму при малоактивном образе жизни.

Объяснение этой разнице дает генетика, а именно гены ACTN3 и MSTN. Альфа-актинин 3, кодируемый геном ACTN3 белок, который словно якорь сцепляет актиновые волокна в мышце и находится только в белых мышечных волокнах, повышая их сократимость и силу [1, 3, 4].

Актин – сократительный белок, который составляет около 15% мышечного белка. Соединяясь с другими белками, волокна актина приобретают способность сокращаться, используя энергию, содержащуюся в АТФ.

Копии генов ACTN3

  1. У относительно небольшого числа людей этот ген представлен двумя «рабочими» копиями, которые достались им от каждого из родителей. Такая особенность предрасполагает к высокому содержанию ACTN3 в мышцах, и, соответственно, высокой силе, мышечному рельефу, а также позволяет добиться особых успехов в тех видах спорта, где требуется взрывная сила или ускорение (например, баскетбол, спринтерский бег и тяжелая атлетика). [3,4]
  2. Обратная ситуация наблюдается примерно у 18% европейской популяции, когда от родителей достались две «нерабочие« копии гена ACTN3. При таком раскладе в белых волокнах практически нет альфа-актинина 3, такие люди в основном имеют красные мышечные волокна и преуспевают в тренировках на выносливость.
  3. Наиболее часто встречается ситуация, когда от одного из родителей достался «рабочий» вариант гена, а от другого – «нерабочий», при этом мы с помощью тренировок можем компенсировать вклад «нерабочего» гена и развить скоростно-силовые качества.

В спортивной генетике исследование гена ACNT3 позволяет выявить спортсменов, которые могут преуспеть в силовых дисциплинах, или в тех видах спорта, где требуется высокий уровень выносливости. Также выявление изменений гена ACTN3 позволяет косвенно оценить соотношение белых и красных мышечных волокон. [3,4]

В противовес эффектам гена ACTN3 выступает ген MSTN, который кодирует белок миостатин. Задача миостатина – предотвратить избыточный рост мышечной ткани, что важно для здоровья сердца.

Количество генов MSTN

    1. Бывают ситуации, когда у человека выявляется вариант гена MSTN, обладающий большей активностью, что означает повышенное содержание миостатина и, соответственно, более стремительное противостояние организма мышечному росту [7]. Такие люди часто астенического телосложения, и им очень тяжело нарастить мышечную массу, даже сочетая оптимальное питание с тренировками.
    2. Реже встречаются люди, обладающие двумя «нерабочими« вариантами гена MSTN. Миостатина у них крайне мало, ничто не препятствует росту мышечной ткани, что приводит к гипертрофии мышц даже без дополнительных тренировок. Часто они выглядят как культуристы, так как жировая прослойка у таких людей выражена не ярко и дает проявиться мышечному рельефу [7].
    3. Бывает и промежуточный вариант, когда от одного из родителей человеку досталась неактивная копия гена MSTN. Соответственно, миостатина в крови содержится меньше за счет синтеза белка с единственной рабочей копии гена [7]. Такой человек без труда наращивает мышечную массу и обладает высокой силой.

Сегодня я осветила эти два гена неспроста, ведь они оба ответственны за подержание мышечной массы.

Только небольшая часть людей действительно предрасположена к гармоничному телу и выдающимся возможностям «от природы», и чаще всего они становятся профессиональными спортсменами [4].

Однако большая часть людей все-таки не имеет таких явных преимуществ в достижении стройного, рельефного тела или развитии силы и выносливости, поэтому регулярные тренировки как интервальные, так и силовые, помогают «перевесить» генетику и приводят к заметным результатам. При этом крайне важно поддерживать имеющиеся мышцы в тонусе, защищая их от неизбежной атрофии с возрастом и малоподвижным образом жизни [5]. 

Автор: Жегулина Ирина, врач-генетик Научный редактор: Елена Дегтярь, PhD, руководитель научного отдела #Sekta

Литература:

1) «Физиология человека» под  редакцией В.М.Покровского, Г. Ф. Коротько 2001 г. 2) Chronic disuse and skeletal muscle structure in older adults: sex-specific differences and relationships to contractile function. American Journal of Physiology — Cell Physiology. 2015 [PMID:25810256]

3) Association of the ACTN3 R577X polymorphism with power athlete status in Russians. European journal of applied physiology  – 2008 [PMID: 18470530]

4) 1000 Norms Project: protocol of a cross-sectional study cataloging human variation. Physiotherapy. 2015 [PMID: 25733400] 5) Contractile properties and sarcoplasmic reticulum calcium content in type I and type II skeletal muscle fibres in active aged humans. The Journal of physiology 2015. [PMID:25809942] 6) Use of mRNA expression signatures to discover small molecule inhibitors of skeletal muscle atrophy. Current opinion in clinical nutrition and metabolic care 2015. [PMID:25807353] 7) Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways.  Cellular and molecular life sciences 2014. [PMID:25080109]

8) Shi H, Zeng C, Ricome A, Hannon KM, Grant AL, Gerrard DE. Extracellular signal-regulated kinase pathway is differentially involved in β-agonist-induced hypertrophy in slow and fast muscles. American Journal of Physiology. 2007;292(5):C1681–C1689.[PMID:17151143]

9) Powers SK, Wade M, Criswell D, et al. Role of beta-adrenergic mechanisms in exercise training-induced metabolic changes in respiratory and locomotor muscle. International Journal of Sports Medicine.1995;16(1):13–18. [PMID:8904577]

sektascience.com

Красные и белые мышечные волокна (медленные и быстрые).

Итак, Вы уже знаете, как мышца получает энергию для сокращения. Теперь следует разобраться с типами мышечного волокна.

Для начала, следует уяснить, что существует два типа мышечного волокна – красное и белое, и каждому типу мышечного волокна соответствует свой способ восстановления запасов АТФ, который преобладает над другими способами.

Таким образом, красные мышечные волокна (малого диаметра) восполняют свои запасы АТФ, в основном, путем окисления жирных кислот и углеводов в митохондрияхмышечных клеток. Эти волокна окружены огромным количеством капилляров, а названием своим обязаны белку миоглобину, повышенное содержание которого и придает волокну красный цвет. Так как на доставку кислорода к мышце требуется определенное время, то красные мышечные волокна еще принято называть медленными. Для поддержания работоспособности, им не требуется быстрое восполнение запасов АТФ. Соответственно, их можно назвать низко утомляемыми, что позволяет им довольно долго поддерживать небольшие усилия.

Что же касается белых волокон (большого диаметра), то в них энергия расходуется значительно быстрее, поэтому здесь необходим быстрый способ восполнения АТФ – гликолиз. Белые волокна также получили название быстрые мышечные волокна. Соответственно белые волокна содержат множество гранул гликогена, из которого образуется глюкоза. Гликолиз, протекает без участия кислорода, что ускоряет воспроизводство энергии в мышце, однако конечным продуктом гликолиза является молочная кислота, которая служит причиной быстрой утомляемости белого мышечного волокна.

В мускулатуре человека встречается и смешанный тип волокон, в которых запасы АТФ пополняются окислительно-гликолитическим путем.

Непосредственное влияние на тип волокна оказывает мотонейрон, управляющий им. В подчинении каждого мотонейрона находится только один тип мышечного волокна.

Далее, в статье Контроль над сокращением мышц, Вы узнаете, каким образом мы способны контролировать скорость и силу сокращения собственных мышц. Данная информация просто необходима для полного понимания процесса преодоления нагрузки мышцей.

© Твой Тренинг

Материалы данной статьи охраняются законом о защите авторских прав. Копирование без указания ссылки на первоисточник и уведомления автора ЗАПРЕЩЕНО!

tvoytrening.ru

Как правильно качать мышцы белые и красные (Таблица).

Когда я бываю в тренажерном зале, то замечаю, что многие «пирожки» вообще не понимают, что они делают и для чего.  Чтобы ваши тренировки были осознанными и вы понимали какие мышцы вы развиваете, а главное как это нужно делать я подготовил статью и таблицу «Как правильно качать мышцы белые и красные».

На теле человека более 600 различных мышц. 50% мышц сосредоточено в нижних конечностях, 30% — в верхних конечностях и 20% приходится на мышцы головы и туловища.  У женщин масса мышц составляет 30-35% от массы тела, а у мужчин 40-45%, у спортсменов 45-55%.

Различают «быстрые» мышцы (ГМВ), «красные» мышцы (ОМВ).

Гликолитические мышечные волокна (ГМВ) хорошо подходят для взрывной силы, скорости, спринтерского бега. Окислительные мышечные волокна (ОМВ) наоборот, больше приспособлены для выносливости, длительного бега.

Тренируются каждый тип мышечных волокон по-разному (см. Таблицу). В динамическом режиме развивают ГМВ, а в статодинамическом ОМВ. Если в тренировке ГМВ используют полную амплитуду движения (присел-встал), то при тренировке ОМВ используют небольшую амплитуду движения под напряжением, порядка 15-20% (присели – чуть привстали, снова чуть присели). Подробнее смотрите в таблице «Как правильно качать мышцы белые и красные?»

Между подходами необходимо отдыхать для восстановления ГМВ 5-10 минут, а ОМВ 3-7 минут. Здесь подразумевается активный отдых. Это не сидеть на стуле, а покрутить педали, походить подвигаться, чтобы выгнать из мышцы ионы водорода.  В это время можно делать подходы на другую группу мышц. Например, делали ноги, а пока перерыв, то можно делать на руки или пресс.

3 повтора на группу мышц – поддерживающая тренировка. Если хотите, чтобы мышцы развивались, тогда необходимо делать от 4 до 9 повторов на каждую группу мышц, которую хотите развивать.

Развивающую тренировку достаточно делать 1 раз в две недели, чтобы мышцы могли полноценно развиваться. Но если вам очень хочется, то можно 1 раз в неделю, но не чаще на конкретную группу мышц.

Как правильно качать мышцы (белые и красные).

maximbuvalin.ru


Смотрите также

Полина Корсакова | Официальный сайт персонального фитнес-тренера и инструктора Kangoo Jumps в Москве. Акции и скидки на занятия.

Услуги и цены Статьи Карта сайта Контакты

Обращаем Ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер и ни при каких условиях не является публичной офертой, определяемой положениями ч. 2 ст. 437 Гражданского кодекса Российской Федерации. Для получения более подробной и точной информации об услугах/ценах/условиях обращайтесь по электронной почте или телефону.