Плоская фигура это


Плоские фигуры - Классификации

Плоская фигура — связное замкнутое подмножество , ограниченное конечным числом попарно не пересекающихся жордановых кривых.

В случае, если все входящие в состав границы плоской фигуры кривые являются ломаными, то фигура называется многоугольной фигурой. Односвязная многоугольная фигура является многоугольником.

 прямоугольник треугольник параллелограмм окружность
    
 квадрат, ромб, прямоугольник равносторонний, равнобедренный, прямоугольный трапеция, параллелограмм круг, окружность, эллипс

Квадра́т — правильный четырёхугольник или ромб, у которого все углы прямые, или параллелограмм, у которого все стороны и углы равны.

Прямоугольник - это параллелограмм , у которого все углы прямые (равны 90 градусам)

Ромб  — это четырёхугольник, у которого все стороны равны. Ромб является параллелограммом. Ромб с прямыми углами называется квадратом.

Трапе́ция  — четырёхугольник, у которого только одна пара противолежащих сторон параллельна. Иногда трапеция определяется как четырёхугольник, у которого пара противолежащих сторон параллельна (про другую не уточняется), в этом случае параллелограмм является частным случаем трапеции. В частности, существует понятие криволинейная трапеция.

Треуго́льник (в евклидовом пространстве) — это геометрическая фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, соединяющих эти три точки. Три точки, образующие треугольник, называются вершинами треугольника, а прямолинейные отрезки — сторонами треугольника. Стороны треугольника образуют в вершинах треугольника три угла. Другими словами, треугольник — это многоугольник, у которого имеется ровно три угла. Если три точки лежат на одной прямой, то «треугольник» с вершинами в трёх данных точках называется вырожденным. Все остальные треугольники невырожденные.

www.sites.google.com

Плоские геометрические фигуры

Простой и понятный демонстрационный материал для изучения плоских геометрических фигур.

Все фигуры тут одного цвета — синего. Рекомендуется распечатать каждую геометрическую фигуру на отдельном листе А4 и провести занятие, когда воспитатель показывает детишкам поочередно каждую карточку и называет фигуру, указывая на ее особенности.

Карточки для изучения выполнены в хорошем качестве, поэтому могут быть использованы как основной дидактический материал в библиотечке воспитателя группы ДОУ.

Прямоугольник Квадрат Параллелограм Трапеция Ромб Пятиугольник Шестиугольник Восьмиугольник Овал Круг Полукруг Кольцо Равнобедренный треугольник Прямоугольный треугольник Равносторонний треугольник Разносторонний треугольник Месяц Плоское сердце Плоский крест Плоская звезда

Публикации по теме:

detskiy-sad.com

Плоские и объемные геометрические фигуры :

Геометрические фигуры представляют собой комплекс точек, линий, тел или поверхностей. Эти элементы могут располагаться как на плоскости, так и в пространстве, формируя конечное количество прямых.

Термин «фигура» подразумевает под собой несколько множеств точек. Они должны располагаться на одной или нескольких плоскостях и одновременно ограничиваться конкретным числом оконченных линий.

Основными геометрическими фигурами считаются точка и прямая. Они располагаются на плоскости. Кроме них, среди простых фигур выделяют луч, ломаную линию и отрезок.

Точка

Это одна из главных фигур геометрии. Она очень маленькая, но ее всегда используют для построения различных форм на плоскости. Точка – это основная фигура для абсолютно всех построений, даже самой высокой сложности. В геометрии ее принято обозначать буквой латинской алфавита, к примеру, A, B, K, L.

С точки зрения математики точка – это абстрактный пространственный объект, не обладающий такими характеристиками, как площадь, объем, но при этом остающийся фундаментальным понятием в геометрии. Этот нульмерный объект просто не имеет определения.

Прямая

Это фигура полностью размещается в одной плоскости. У прямой нет конкретного математического определения, так как она состоит из огромного количества точек, располагающихся на одной бесконечной линии, у которой нет предела и границ.

Существует еще и отрезок. Это тоже прямая, но она начинается и заканчивается с точки, а значит, имеет геометрические ограничения.

Также линия может превратиться в направленный луч. Такое происходит, когда прямая начинается с точки, но четкого окончания не имеет. Если же поставить точку посредине линии, то она разобьется на два луча (дополнительных), причем противоположно направленных друг к другу.

Несколько отрезков, которые последовательно соединяются друг с другом концами в общей точке и располагаются не на одной прямой, принято называть ломаной линией.

Угол

Геометрические фигуры, названия которых мы рассмотрели выше, считают ключевыми элементами, использующимися при построении более сложных моделей.

Угол – это конструкция, состоящая из вершины и двух лучей, которые выходят из нее. То есть стороны этой фигуры соединяются в одной точке.

Плоскость

Рассмотрим еще одно первичное понятие. Плоскость – это фигура, у которой нет ни конца, ни начала, равно как и прямой, и точки. Во время рассмотрения этого геометрического элемента во внимание берется лишь его часть, ограниченная контурами ломаной замкнутой линии.

Любую гладкую ограниченную поверхность можно считать плоскостью. Это может быть гладильная доска, лист бумаги или даже дверь.

Четырехугольники

Параллелограмм – это геометрическая фигура, противоположные стороны которой параллельны друг другу попарно. Среди частных видов этой конструкции выделяют ромб, прямоугольник и квадрат.

Прямоугольник – это параллелограмм, у которого все стороны соприкасаются под прямым углом.

Квадрат – это четырехугольник с равными сторонами и углами.

Ромб – это фигура, у которой все грани равны. При этом углы могут быть совершенно разными, но попарно. Каждый квадрат считается ромбом. Но в противоположном направлении это правило действует не всегда. Далеко не каждый ромб является квадратом.

Трапеция

Геометрические фигуры бывают совершенно разными и причудливыми. Каждая из них имеет своеобразную форму и свойства.

Трапеция – это фигура, которая чем-то схожа с четырехугольником. Она имеет две параллельные противоположные стороны и при этом считается криволинейной.

Круг

Эта геометрическая фигура подразумевает расположение на одной плоскости точек, равноудаленных от ее центра. При этом заданный ненулевой отрезок принято называть радиусом.

Треугольник

Это простая геометрическая фигура, которая очень часто встречается и изучается.

Треугольник считается подвидом многоугольника, расположенным на одной плоскости и ограниченным тремя гранями и тремя точками соприкосновения. Эти элементы попарно соединены между собой.

Многоугольник

К этой категории стоит отнести геометрические фигуры разнообразных форм, ломаная линия контуров которых замыкается.

Вершинами многоугольников называют точки, соединяющие отрезки. А последние, в свою очередь, принято считать сторонами.

Объемные геометрические фигуры

К этой категории причисляют следующие конструкции:

  • куб;
  • призма;
  • сфера;
  • конус;
  • цилиндр;
  • пирамида;
  • тор.

Эти тела имеют нечто общее. Все они ограничиваются замкнутой поверхностью, внутри которой находится множество точек.

Объемные тела изучают не только в геометрии, но и в кристаллографии.

Любопытные факты

Наверняка вам будет интересно ознакомиться с информацией, предоставленной ниже.

  • Геометрия сформировалась как наука еще в давние века. Это явление принято связывать с развитием искусства и разнообразных ремесел. А названия геометрических фигур свидетельствуют об использовании принципов определения подобия и схожести.
  • В переводе с древнегреческого термин «трапеция» обозначает столик для трапезы.
  • Если вы возьмете различные фигуры, периметр которых будет одинаковым, то наибольшая площадь гарантированно будет у круга.
  • В переводе с греческого языка термин «конус» обозначает сосновую шишку.
  • Существует известная картина Каземира Малевича, которая начиная с прошлого века притягивает к себе взгляды многих живописцев. Работа «Черный квадрат» всегда была мистической и загадочной. Геометрическая фигура на белом полотне восхищает и поражает одновременно.

Существует большое количество геометрических фигур. Все они отличаются параметрами, а порой даже удивляют формами.

www.syl.ru

Фигура (плоская форма)

Двумерное образование. Занимаемое ею пространство совпадает с плоскостью рисунка. Фигура используется для обозначения контура, площади, очертания, обрамления или краев.

Фигуры характеризуются строением своих краев, различаются по размерам, по распределению насыщенности их частей, по положению в окружающем пространстве, а также по правильности (или не правильности) очертаний. Плоская форма может быть сплошной, например, закрашенной в черный цвет, или иметь только контур. Ограниченное фигурой пространство может образовать с окружающей средой еще одну, так называемую «негативную», плоскую форму. Сочетание слов и чисел могут восприниматься как плоская форма. При наличии ассоциативных признаков плоские формы могут восприниматься и как символы. Несколько фигур могут, сочетаясь в группу, вызывать представление о большой плоской фигуре.

Тон или цвет

Качество, которое относиться к степени его светлоты или темноты. При отсутствии цвета (красного, желтого, синего или другого) тон, или степень светлоты, становиться просто оттенком серого.

В графике впечатления серого создается концентрацией маленьких пятнышек, которые при рассмотрении их с некоторого расстояния сливаются с разделяющими их белыми промежутками. Результирующий воспринимаемый глазом оттенок серого зависит от соотношения размеров и плотности этих точек (растр).

В качестве фона для групп связанных элементов или для деталей фигуры полезно использовать очень светлые тона. Светлые оттенкиболее четко выявляют площадь или структуру, на которую наносятся черным цветом значимые формы.Светло-средниеоттенки достаточно весомые для описания деталей формы и в то же время достаточно светлы, чтобы на них нанести темные формообразующие элементы.Средниеоттенки можно использовать для выявления тонких особенностей формы или для показа крупных «обращенных», т.е. имеющих обратный контраст, форм (светлая форма на темном фоне).Темно-средние оттенки, используемые в качестве фона, обеспечивают достаточный контраст для восприятия малых светлых или второстепенных черных форм.Темные и очень темныеоттенки используются в сочетании с другими, когда для дифференциации деталей требуется широкая градация оттенков.

Текстура

является качеством поверхностной структуры рисунка, она зависит от фактического строения поверхности объекта, но ощущается глазом, а не рукой. Текстура образуется скоплением малых частичек в определенную систему, визуальный характер которой зависит от всего этого скопления в целом.

Характер текстуры изменяется в зависимости от структуры ее отдельных элементов и промежутков между ними, зависит текстура и от того, каков закон распределения этих элементов – случайный или регулярный.

Текстуры бывают абстрактные, символические или описательные. Как и другие формы, текстуры могут отличаться друг от друга светлотой (тоном).

Грамматика пространства

Какой бы ни была форма фигуры, для ее существования необходима некоторая поверхность, или плоскость рисунка. Физически плоскость рисунка – это просто плоская поверхность листа, на который наноситься рисунок, но в зрительном восприятии она функционирует как трехмерное пространство, что следует учитывать в процессе отображения визуальной информации. Восприятие страницы как воображаемой плоскости, стеклянной панели обеспечивает пространственную ориентацию элементов фигуры, благодаря чему можно представлять себе фигуру, расположенной не только в плоскости рисунка, но и за ней. В результате добавления нового измерения – глубины – увеличивается содержательность рисунка. Глубина не всегда необходима, но она всегда повышает выразительность рисунка. Как искусственный образ, рисунок неизбежно вызывает работу воображения, и, чтобы образ проник в сознание, необходимо лишь, чтобы он связывался с привычным пространственным ориентиры. Можно и избежать отображения глубины, если не давать этих пространственных ориентиров. Это значит, что пространственные свойства в графической фигуре определяется формой, которая их организует. Таким образом, элементы формы должны конструироваться не только с учетом их индивидуальных смысловых значений, но и с учетом того пространственного порядка, в котором они соотносятся между собой в составе единого, связанного образа. На практике пространственная организация может быть плоской (одноплановой), многоплановой или непрерывной (объемной)в зависимости от пространственной задачи.

studfiles.net


Смотрите также

Полина Корсакова | Официальный сайт персонального фитнес-тренера и инструктора Kangoo Jumps в Москве. Акции и скидки на занятия.

Услуги и цены Статьи Карта сайта Контакты

Обращаем Ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер и ни при каких условиях не является публичной офертой, определяемой положениями ч. 2 ст. 437 Гражданского кодекса Российской Федерации. Для получения более подробной и точной информации об услугах/ценах/условиях обращайтесь по электронной почте или телефону.