Структуры и вещества необходимые для синтеза белка


Синтез белков.

В синтезе белков из аминокислот можно выделить три этапа.

Первый этап – транскрипция – был описан в предыдущей теме. Он состоит в образовании молекул РНК на матрицах ДНК. Для синтеза белка особое значение имеет синтез матричных или информационных РНК, так как здесь записана информация о будущем белке. Транскрипция протекает в ядре клеток. Затем с помощью специальных ферментов, образовавшаяся матричная РНК перемещается в цитоплазму.

Второй этап называется рекогниция. Аминокислоты избирательно связываются с своими переносчиками транспортными РНК.

Все т-РНК построены сходным образом. Молекула каждой т-РНК представляет собой полинуклеотидную цепь, изогнутую в виде «клеверного листа». Молекулы т-РНК устроены таким образом, что имеют разные концы, имеющие сродство и с м-РНК (антикодон) и с аминокислотами. Т-РНК имеет в клетке 60 разновидностей.

Для соединения аминокислот с транспортными РНК служит особый фермент т-РНК синтетаза или, точнее, амино-ацил – т-РНК синтетаза.

Третий этап биосинтеза белка называется трансляция. Он происходит на рибосомах. Каждая рибосома состоит из двух частей – большой и малой субъединиц. Они состоят из рибосомных РНК и белков.

Трансляция начинается с присоединения матричной РНК к рибосоме. Затем к образовавшемуся комплексу начинают присоединяться т-РНК с аминокислотами. Присоединение это происходит путем связывания антикодона т-РНК к кодону информационной РНК на основании принципа комплементарности. Одновременно к рибосоме могут присоединится не более двух т-РНК. Далее аминокислоты соединяются друг с другом пептидной связью, образуя постепенно полипептид. После этого рибосома передвигает информационную РНК ровно на один кодон. Дальше процесс повторяется снова до тех пор пока информационная РНК не закончится. На конце и-РНК находятся бессмысленные кодоны, которые являются точками в записи и одновременно командой для рибосомы, что она должна отделиться от и-РНК

Таким образом, можно выделить несколько особенности биосинтеза белков.

1. Первичная структура белков формируется строго на основе данных записанных в молекулах ДНК и информационных РНК,

2. Высшие структуры белка (вторичная, третичная, четвертичная) возникают самопроизвольно на основе первичной структуры.

3. В некоторых случаях полипептидная цепь после завершения синтеза подвергается незначительной химической модификации, в результате чего в ней появляются некодируемые аминокислоты, не относящиеся к 20 обычным. Примером такого превращения является белок коллаген, где аминокислоты лизин и пролин превращаются в оксипролин и оксилизин.

4. Синтез белков в организме ускоряется соматотропным гормоном и гормоном тестостероном.

5. Синтез белков очень энергоемкий процесс, требующий огромного количества АТФ.

6. Многие антибиотики подавляют трансляцию.

Метаболизм аминокислот.

Аминокислоты могут использоваться для синтеза различных небелковых соединений. Например, из аминокислот синтезируется глюкоза, азотистые основания, небелковая часть гемоглобина – гем, гормоны – адреналин, тироксин и такие важные соединения, как креатин, карнитин, принимающие участие в энергетическом обмене.

Часть аминокислот подвергается распаду до углекислого газа, воды и аммиака.

Распад начинается с реакций общих для большинства аминокислот.

К ним относятся.

1. Декарбоксилирование - отщепление от аминокислот карбоксильной группы в виде углекислого газа.

ПФ (пиридоксальфосфат) – кофермент производное витамина В6.

Так, например, образуется гистамин из аминокислоты гистидина. Гистамин – важное сосудорасширяющее вещество.

2. Дезаминирование - отцепление аминогруппы в виде Nh4 . У человека дезаминирование аминокислот идет окислительным путем.

3. Трансаминирование – реакция между аминокислотами и α-кетокислотами. В ходе этой реакции её участники обмениваются функциональными группами.

Трансаминированию подвергаются все аминокислоты. Этот процесс – главное превращение аминокислот в организме, так как у него скорость значительно выше, чем у двух первых описанных реакций.

Трансаминирование выполняет две основные функции.

1. За счет этих реакций одни аминокислоты превращаются в другие. При этом общее количество аминокислот не меняется но меняется общее соотношение между ними в организме. С пищей в организм поступают чужеродные белки, у которых аминокислоты находятся в иных пропорциях. Путем трансаминирования происходит корректировка аминокислотного состава организма.

2. Трансаминирование является составной частью процесса косвенного дезаминирования аминокислот – процесса, с которого начинается распад большинства аминокислот.

Схема косвенного дезаминирования.

В результате трансаминирования образуются α-кетокислоты и аммиак. Первые разрушаются до углекислого газа и воды. Аммиак для организма высокотоксичен. Поэтому в организме существуют молекулярные механизмы его обезвреживания.

studfiles.net

Биосинтез белка

Генетическая информация у всех организмов хранится в виде определенной последовательности нуклеотидов ДНК (или РНК у РНК-содержащих вирусов). Прокариоты содержат генетическую информацию в виде одной молекулы ДНК. В эукариотических клетках генетический материал распределен в нескольких молекулах ДНК, организованных в хромосомы.

ДНК состоит из кодирующих и некодирующих участков. Кодирующие участки кодируют РНК. Некодирующие области ДНК выполняют структурную функцию, позволяя участкам генетического материала упаковываться определенным образом, или регуляторную функцию, участвуя во включении генов, направляющих синтез белка.

Кодирующими участками ДНК являются гены. Ген — участок молекулы ДНК, кодирующей синтез одной мРНК (и соответственно полипептида), рРНК или тРНК.

Участок хромосомы, где расположен ген называют локусом. Совокупность генов клеточного ядра представляет собой генотип, совокупность генов гаплоидного набора хромосом — геном, совокупность генов внеядерных ДНК (митохондрий, пластид, цитоплазмы) — плазмон.

Реализация информации, записанной в генах, через синтез белков называется экспрессией (проявлением) генов. Генетическая информация хранится в виде определенной последовательности нуклеотидов ДНК, а реализуется в виде последовательности аминокислот в белке. Посредниками, переносчиками информации, выступают РНК, т.е. реализация генетической информации происходит следующим образом:

ДНК → РНК → белок

Этапы биосинтеза белка

Процесс биосинтеза белка включает два этапа: транскрипцию и трансляцию.

Транскрипция (от лат. transcriptio — переписывание) — синтез РНК с использованием ДНК в качестве матрицы. В результате образуются мРНК, тРНК и рРНК. Процесс транскрипции требует больших затрат энергии в виде АТФ и осуществляется ферментом РНК-полимеразой.

Одновременно транскрибируется не вся молекула ДНК, а лишь отдельные ее отрезки. Такой отрезок (транскриптон) начинается промотором (участок ДНК, куда присоединяется РНК-полимераза и откуда начинается транскрипция) и заканчивается терминатором (участок ДНК, содержащий сигнал окончания транскрипции). Транскриптон — это ген с точки зрения молекулярной биологии.

Транскрипция, как и репликация, основана на способности азотистых оснований нуклеотидов к комплементарному связыванию. На время транскрипции двойная цепь ДНК разрывается, и синтез РНК осуществляется по одной цепи ДНК.

В процессе трансляции последовательность нуклеотидов ДНК переписывается на синтезирующуюся молекулу мРНК, которая выступает в качестве матрицы в процессе биосинтеза белка.

Гены прокариот состоят только из кодирующих нуклеотидных последовательностей. Гены эукариот состоят из чередующихся кодирующих (экзонов) и не кодирующих (интронов) участков. После транскрипции участки мРНК, соответствующие интронам, удаляются в ходе сплайсинга, являющегося составной частью процессинга. Процессинг — процесс формирования зрелой мРНК из ее предшественника пре-мРНК.

Он включает два основных события:

  1. присоединение к концам мРНК коротких последовательностей нуклеотидов, обозначающих место начала и место конца трансляции;
  2. сплайсинг — удаление неинформативных последовательностей мРНК, соответствующих интронам ДНК. В результате сплайсинга молекулярная масса мРНК уменьшается в 10 раз.

Трансляция (от лат. translatio — перевод) — синтез полипептидной цепи с использованием мРНК в роли матрицы.

В трансляции участвуют все три типа РНК:

  • мРНК служит информационной матрицей;
  • тРНК доставляют аминокислоты и узнают кодоны;
  • рРНК вместе с белками образуют рибосомы, которые удерживают мРНК;
  • тРНК и белок и осуществляют синтез полипептидной цепи.

мРНК транслируется не одной, а одновременно несколькими (до 80) рибосомами. Такие группы рибосом называются полирибосомами (полисомами). На включение одной аминокислоты в полипептидную цепь необходима энергия четырех АТФ.

Генетический код

Информация о структуре белков «записана» в ДНК в виде последовательности нуклеотидов. В процессе транскрипции она переписывается на синтезирующуюся молекулу мРНК, которая выступает в качестве матрицы в процессе биосинтеза белка. Определенному сочетанию нуклеотидов ДНК, а следовательно, и мРНК, соответствует определенная аминокислота в полипептидной цепи белка. Это соответствие называют генетическим кодом. Одну аминокислоту определяют три нуклеотида, объединенных в триплет (кодон). Поскольку существуют четыре типа нуклеотидов, объединяясь по три в триплет, они дают 43 = 64 варианта триплетов (в то время как кодируются только 20 аминокислот). Из них три являются «стоп-кодонами», прекращающими трансляцию, остальные 61 — кодирующими. Разные аминокислоты кодируются разным числом триплетов: от 1 до 6.

Аминокислоты, входящие в состав природных белков № п/п Аминокислота Сокращенное название
1 Аланин Ала
2 Аргинин Арг
3 Аспарагин Асн
4 Аспарагиновая кислота Асп
5 Валин Вал
6 Гистидин Гис
7 Глицин Гли
8 Глутамин Глн
9 Глутаминовая кислота Глу
10 Изолейцин Иле
11 Лейцин Лей
12 Лизин Лиз
13 Метионин Мет
14 Пролин Про
15 Серин Сер
16 Тирозин Тир
17 Треонин Тре
18 Триптофан Три
19 Фенилаланин Фен
20 Цистеин Цис
Генетический код Первое основание Второе основание Третье основание У(А) Ц(Г) А(Т) Г(Ц)
У(А) Фен Сер Тир Цис У(А)
Фен Сер Тир Цис Ц(Г)
Лей Сер Стоп Стоп А(Т)
Лей Сер Стоп Три Г(Ц)
Ц(Г) Лей Про Гис Арг У(А)
Лей Про Гис Арг Ц(Г)
Лей Про Глн Арг А(Т)
Лей Про Глн Арг Г(Ц)
А(Т) Иле Тре Асн Сер У(А)
Иле Тре Асн Сер Ц(Г)
Иле Тре Лиз Арг А(Т)
Мет Тре Лиз Арг Г(Ц)
Г(Ц) Вал Ала Асп Гли У(А)
Вал Ала Асп Гли Ц(Г)
Вал Ала Глу Гли А(Т)
Вал Ала Глу Гли Г(Ц)

Примечания:

  1. Первое азотистое основание в триплете находится в левом вертикальном ряду, второе — в верхнем горизонтальном, третье — в правом вертикальном.
  2. На пересечении линий трех оснований выявляется искомая аминокислота.
  3. Азотистые основания вне скобок входят в состав мРНК, азотистые основания в скобках — в состав ДНК.

Свойства генетического кода:

  1. код триплетен — одна аминокислота кодируется тремя нуклеотидами (триплетом) в молекуле нуклеиновой кислоты;
  2. код универсален — все живые организмы от вирусов до человека используют единый генетический код;
  3. код однозначен (специфичен) — триплет соответствует одной единственной аминокислоте.
  4. код избыточен — одна аминокислота кодируется более чем одним триплетом;
  5. код не перекрывается — один нуклеотид не может входить в состав сразу нескольких кодонов в цепи нуклеиновой кислоты;
  6. код колинеарен — последовательность аминокислот в синтезируемой молекуле белка совпадает с последовательностью триплетов вмРНК.

Этапы трансляции

Трансляция состоит из трех этапов: инициации, элонгации и терминации.

  1. Инициация — сборка комплекса, участвующего в синтезе полипептидной цепи. Малая субчастица рибосомы соединяется с инициаторной мет-тРНК, а затем с мРНК, после чего происходит образование целой рибосомы, состоящей из малой и большой субчастиц.
  2. Элонгация — удлинение полипептидной цепи. Рибосома перемещается вдоль мРНК, что сопровождается многократным повторением цикла присоединения очередной аминокислоты к растущей полипептидной цепи.
  3. Терминация — завершение синтеза полипептидной молекулы. Рибосома достигает одного из трех стоп-кодонов мРНК, а так как не существует тРНК с антикодонами, комплементарными стоп-кодонам, синтез полипептидной цепи прекращается. Она высвобождается и отделяется от рибосомы. Рибосомные субчастицы диссоциируют, отделяются от мРНК и могут принять участие в синтезе следующей полипептидной цепи.

Реакции матричного синтеза

К реакциям матричного синтеза относят:

  • самоудвоение ДНК (репликация);
  • образование мРНК, тРНК и рРНК на молекуле ДНК (транскрипция);
  • биосинтез белка на мРНК (трансляция).

Все эти реакции объединяет то, что молекула ДНК в одном случае или молекула мРНК в другом выступают в роли матрицы, на которой происходит образование одинаковых молекул. На реакциях матричного синтеза основана способность живых организмов к воспроизведению себе подобных.

Регуляция экспрессии генов

Тело многоклеточного организма построено из разнообразных клеточных типов. Они отличаются структурой и функциями, т.е. дифференцированы. Различия проявляются в том, что помимо белков, необходимых любой клетке организма, клетки каждого типа синтезируют еще и специализированные белки: в эпидермисе образуется кератин, в эритроцитах — гемоглобин и т.д. Клеточная дифференцировка обусловлена изменением набора экспрессируемых генов и не сопровождается какими-либо необратимыми изменениями в структуре самих последовательностей ДНК.

jbio.ru

65. Биосинтез белков. Основные компоненты белоксинтезирующей системы. Биосинтез и созревание м-рнк.

Основные компоненты белоксинтезирующей системы

Необходимые компоненты

Функции

1 . Аминокислоты

Субстраты для синтеза белков

2. тРНК

тРНК выполняют функцию адаптеров. Они акцепторным концом взаимодействуют с аминокислотами, а антикодоном - с кодоном мРНК.

3. Аминоацил-тРНК синтетазы

Каждая аа-тРНК-синтетаза катализирует реакцию специфического связывания одной из 20 аминокислот с соответствующей тРНК

4.мРНК

Матрица содержит линейную последовательность кодонов, определяющих первичную структуру белков

5. Рибосомы

Рибонуклеопротеиновые субклеточные структуры, являющиеся местом синтеза белков

6. АТФ, ГТФ

Источники энергии

7. Белковые факторы инициации, элонгации, терминации

Специфические внерибосомные белки, необходимые для процесса трансляции (12 факторов инициации: elF; 2 фактора элонгации: eEFl, eEF2, и факторы терминации: eRF)

8. Ионы магния

Кофактор, стабилизирующий структуру рибосом

66. Понятие о биологическом коде, свойства биологического кода. Универсальность биологического кода и процессов биосинтеза белка.

Генетический (биологический или аминокислотный) код - это определенные сочетания нуклеотидов и последовательность их расположения в молекуле ДНК. Это свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

Его свойства:

  • Триплетность (1 аминокислота кодируется 3 нуклеотидами)

  • Специфичность (каждому кодону соответствует одна аминокислота)

  • Вырожденность (кодирование одной АК более чем одним триплетом

  • Линейная запись (прочтение кода без знаков препинания)

  • Универсальность (одинакова для всех живых существ)

До недавнего времени считалось, что код абсолютно универсален, т.е. смысл кодовых слов одинаков для всех изученных организмов: вирусов, бактерий, растений, земноводных, млекопитающих, включая человека. Однако позднее стало известно одно исключение, оказалось, что митохондриальная мРНК содержит 4 триплета, имеющих другое значение, чем в мРНК ядерного происхождения. Так, в мРНК митохондрий триплет UGA кодирует Три, AUA - Мет, а АСА и AGG прочитываются как дополнительные стоп-кодоны.

67. Транспортная рнк как адаптор аминокислот. Биосинтез аминоацил-т-рнк.

После присоединения к соответствующей тРНК аминокислота уже не участвует в определении специфичности аминоацил-тРНК, ибо сама по себе аминоацильная группа не узнается ни рибосомой, ни мРНК. Специфичность аминоацил-тРНК обеспечивается исключительно структурой тРНК. Это было окончательно доказано четкими опытами, в которых с помощью ферментов была получена цистеинил-тPHKCys, которую затем выделили и химическим путем превратили в аланил-тPHKCys. После этого такую гибридную аминоацил-тРНК, которая несет аланин, но содержит антикодон для цистеина, инкубировали в бесклеточной белоксинтезирующей системе. При анализе новосинтезированного полипептида было обнаружено, что в положениях, которые должен занимать цистеин, присутствует аланин

Этапы биосинтеза белка Активация аминокислот. В гиалоплазму из межклеточной жидкости в результате диффузии, осмоса или активного переноса поступают аминокислоты. Каждый вид амино- и иминокислот взаимодействует с индивидуальным ферментом – аминоацилсинтетазой. Реакция активируется катионами магния, марганца, кобальта. Возникает активированная аминокислота. Биосинтез белка (второй этап) – взаимодействие и соединение активированной аминокислоты с т-РНК. Активированные аминокислоты (аминоациладенилат) при помощи ферментов переносятся на т-РНК цитоплазмы. Процесс катализируется аминоацил-РНК-синтетазами. Остаток аминокислоты соединяется карбоксильной группой с гидроксильной второго атома Карбона рибозы нуклеотида т-РНК. Биосинтез белка (третья стадия) – транспортировка комплекса активированной аминокислоты с т-РНК в рибосомы клетки. Аминокислота связана с т-РНК, переносится с гиалоплазмы на рибосому. Процесс катализируется специфическими ферментами, которых в организме не менее 20. Некоторые аминокислоты транспортируются несколькими т-РНК (например, валин и лейцин - тремя т-РНК). В этом процессе используется энергия ГТФ и АТФ. Четвертая стадия биосинтеза характеризируется связыванием аминоацил-т-РНК с комплексом и-РНК - рибосома. Аминоацил-т-РНК, подойдя к рибосоме, взаимодействует с и-РНК. Каждая т-РНК имеет участок, состоящий из трех нуклеотидов - антикодон. В и-РНК ему соответствует участок с тремя нуклеотидами - кодон. Каждому кодону соответствуют антикодон т-РНК и одна аминокислота. В ходе биосинтеза к рибосомам присоединяются в виде аминоацил-тРНК аминокислоты, которые в дальнейшем в порядке, определяемом размещением кодонов в и-РНК, формируются в полипептидную цепь.

studfiles.net

Регуляция синтеза белка

Основным условием существования любых живых организмов является наличие тонкой, гибкой, согласованно действующей системы регулирования, в которой все элементы тесно связаны друг с другом. В белковом синтезе не только количественный и качественный состав белков, но и время синтеза имеет прямое отношение ко многим проявлениям жизни. В частности, от этого зависит приспособление микроорганизмов к условиям окружающей питательной среды как биологической необходимости или приспособление сложного многоклеточного организма к физиологическим потребностям при изменении внутренних и внешних условий.

Клетки живых организмов обладают способностью синтезировать огромное количество разнообразных белков. Однако они никогда не синтезируют все белки. Количество и разнообразие белков, в частности ферментов, определяются степенью их участия в метаболизме. Более того, интенсивность обмена регулируется скоростью синтеза белка и параллельно контролируется аллостерическим путем. Таким образом, синтез белка регулируется внешними и внутренними условиями, которые диктуют клетке синтез такого количества белка и таких белков, которые необходимы для выполнения физиологических функций. Все это свидетельствует о весьма сложном, тонком и целесообразном механизме регуляции синтеза белка в клетке.

Общую теорию регуляции синтеза белка разработали Ф. Жакоб и Ж. Моно. Сущность этой теории сводится к «выключению» или «включению» генов как функционирующих единиц, к возможности или невозможности проявления их способности передавать закодированную в структурных генах ДНК генетическую информацию для синтеза специфических белков. Эта теория, доказанная в опытах на бактериях, получила широкое признание, хотя в эукариотических клетках механизм регуляции синтеза белка вероятно более сложный. У бактерий доказана индукция ферментов (т. е. синтез ферментов denovo) при добавлении в питательную среду субстратов этих ферментов. Добавление конечных продуктов реакции, образование которых катализируется этими же ферментами, напротив, вызывает уменьшение количества синтезируемых ферментов. Это последнее явление получило название репрессии синтеза ферментов. Оба явления — индукция и репрессия — взаимосвязаны.

Согласно теории Жакоба и Моно в биосинтезе белка у бактерий участвуют по крайней мере три типа генов: структурные гены, ген-регулятор и ген-оператор. Структурные гены определяют первичную структуру синтезируемого белка. Именно эти гены в цепи ДНК являются основой для биосинтеза мРНК, которая затем поступает в рибосому и, как было указано выше, служит матрицей для биосинтеза белка.

Синтез мРНК на структурных генах молекулы ДНК непосредственно контролируется определенным участком, называемым геном-оператором. Он служит как бы пусковым механизмом для функционирования структурных генов. Ген-оператор локализован на крайнем отрезке структурного гена или структурных генов, регулируемых им. «Считывание» генетического кода, т. е. формирование мРНК, начинается спромотора— участка ДНК, являющегося точкой инициации для синтеза мРНК, и далее распространяется последовательно вдоль оператора и струк­турных генов. Координированный одним оператором одиночный ген или группа структурных генов образует оперон.

В свою очередь деятельность оперона находится под контролирующим влиянием другого участка цепи ДНК, получившего название гена-регулятора. Поскольку структурные гены и ген-регулятор находятся в разных участках цепи ДНК, связь между ними, как предполагают Ф. Жакоб и Ж. Моно, осуществляется при помощи вещества-посредника, оказавшегося белком и названного репрессором. Образование репрессора происходит в рибосомах ядра на матрице специфической мРНК, синтезированной на гене-регуляторе. Репрессор имеет сродство к гену-оператору и обратимо соединяется с ним в комплекс. Образование такого комплекса приводит к блокированию синтеза мРНК и, следовательно, синтеза белка, т.е. функция гена-регулятора состоит, в том, чтобы через белок-репрессор прекращать деятельность структурных генов, синтезирующих мРНК. Репрессор, кроме того, обладает способностью строго специфически связываться с определенными низкомолекулярными веществами, называемыми индукторами, или эффекторами. Когда такой индуктор соединяется с репрессором, последний теряет способность связываться с геном-оператором, который таким образом выходит из-под контроля гена-регулятора, и начинается синтез мРНК.

Это типичный пример отрицательной формы контроля, когда индуктор, соединяясь с белком-репрессором, вызывает изменения его третичной структуры настолько, что репрессор теряет способность связываться с геном-оператором. Этот процесс аналогичен взаимоотношениям аллостерического центра фермента с эффектором, под влиянием которого изменяется третичная структура фермента и он теряет способность связываться со своим субстратом.

Механизм описанной регуляции синтеза белка и взаимоотношения репрессора со структурными генами были доказаны в опытах на Е. coli, на примере синтеза Р-галактозидазы (лактазы) — фермента, гидролизующего молочый сахар на глюкозу и галактозу. Дикий штамм Е. coli, обычно растущий на глюкозе, не может расти, если вместо глюкозы в питательную среду добавить лактозу (новый источник энергии и углерода) до тех пор, пока не будут синтезированы соответствующие ферменты (адаптивный синтез). При поступлении в клетку лактозы (индуктора) молекулы ее связываются с белком-репрессором и блокируют связь между репрессором и геном-оператором. При этом ген-оператор и структурные гены начинают снова функционировать и синтезировать необходимую мРНК, которая «дает команду» рибосомам синтезировать р-галактозидазу. Одновременно ген-регулятор продолжает вырабатывать репрессор, но он блокируется новыми молекулами лактозы, поэтому синтез фермента продолжается. Как только молекулы лактозы будут полностью расщеплены, репрессор освобождается и, поступив в ДНК, связывает ген-оператор и блокирует синтез мРНК, а следовательно, синтез Р-галактозидазы в рибосомах.

Таким образом, биосинтез мРНК, контролирующий синтез белка в рибосомах, зависит от функционального состояния репрессора. Если репрессор, который представляет собой белок, построенный из 4 субъединиц с общей молекулярной массой около 150000 Да, находится в активном состоянии, не связан с индуктором, то он блокирует ген-оператор и синтез мРНК не происходит. При поступлении метаболита-индуктора в клетку его молекулы связывают репрессор, превращая его в неактивную форму (или, возможно, снижая его сродство к гену-оператору). Структурные гены выходят из-под запрещающего контроля и начинают синтезировать нужную мРНК.

Выше было указано, что концентрация ряда ферментов в клетках резко снижается при увеличении концентрации отдаленных конечных продуктов, образующихся в цепи последовательных ферментативных реакций. Такой эффект, получивший название репрессии ферментов, часто наблюдается при реакциях биосинтеза. В этих случаях оказалось, что молекулы репрессора, также образующиеся в рибосомах ядра по «команде» гена-регулятора, являются неактивными и сами по себе не обладают способностью подавлять деятельность гена-оператора и, следовательно, всего оперона, но приобретают такую способность после образования комплекса с конечным или одним из конечных продуктов биосинтетического процесса.

Конечный продукт выступает, таким образом, в качестве корепрессора. Имеются данные, показывающие, что в качестве корепрессоров в синтезе ферментов обмена аминокислот выступает не свободная аминокислота как конечный продукт биосинтетической реакции, а комплекс ее с тРНК — аа-тРНК.

В регуляции экспрессии структурных генов специфическое участие принимает особый белок, получивший название катаболитный ген-активирующий белок (от англ, catabolitegeneactivationprotein, сокращенно обозначаемый САР); этот белок взаимодействует с цАМФ, образуя комплекс, способствующий прикреплению РНК-полимеразы к промоторному участку генома. В присутствии комплекса САР-цАМФ фермент может начать транскрипцию оперона, включая структурные гены, т. е. в клетках имеется еще один, дополнительный САР-цАМФ регулятор, действующий скорее всего в качестве положительного регулятора, поскольку его присутствие необходимо для начала экспрессии гена. Таким образом, концепции Жакоба и Моно о механизме проявления активности генов признана одним из блестящих достижений молекулярной биологии. Она явилась логическим развитием многочисленных исследований, проведенных генетиками и биохимиками в предшествующие десятилетия.

В заключение следует вкратце рассмотреть вопрос о регуляции процессов дифференцировки клеток высших организмов. ДНК, присутствующая во всех соматических клетках, вероятнее всего, имеет одинаковую первичную структуру у данного организма и соответственно располагает информацией для синтеза любых или всех белков тела. Тем не менее клетки печени, например, синтезируют сывороточные белки, а клетки молочной железы — белки молока. Нет сомнения в том, что в дифференцированных клетках, очевидно, существует тонкий механизм контроля деятельности ДНК в разных тканях, обеспечивающий синтез многообразия белков.

Механизмы, лежащие в основе этой регуляции, пока неизвестны. Для объяснения их имеется ряд гипотез. Предполагается, что контроль осуществляется на уровне транскрипции по аналогии с индукцией ферментов у бактерий и что в этом случае в клетках животных должны функционировать аналогичные репрессоры.. Поскольку с молекулой ДНК у зукариот связаны гистоны, считается, что именно они выполняют роль репрессоров. Однако прямые доказательства их роли в качестве репрессоров отсутствуют, как и точные данные о существовании и природе каких-либо репрессоров в клетках эукариот. Высказано предположение, что в ядре синтезируется гигантская молекула мРНК, содержащая информацию для синтеза широкого разнообразия белков, но в цитоплазму, как было показано выше, попадает только небольшая часть зрелой мРНК, а основная часть распадается. Неясны, однако, биологический смысл и назначение этого механизма избирательного распада и, соответственно, траты огромной части молекулы мРНК.

Существует еще одно предположение, что на ДНК клетки синтезируются все возможные мРНК, которые поступают в цитоплазму, и процесс трансляции регулируется путем специфического и избирательного взаимодействия с определенными молекулами мРНК.

studfiles.net


Смотрите также

Полина Корсакова | Официальный сайт персонального фитнес-тренера и инструктора Kangoo Jumps в Москве. Акции и скидки на занятия.

Услуги и цены Статьи Карта сайта Контакты

Обращаем Ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер и ни при каких условиях не является публичной офертой, определяемой положениями ч. 2 ст. 437 Гражданского кодекса Российской Федерации. Для получения более подробной и точной информации об услугах/ценах/условиях обращайтесь по электронной почте или телефону.